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Jahn-Teller Steering Committee (2009-)

“Enhanced Solid-State Phosphorescence of Organoplatinum m-Systems by Ion-
Pairing Assembly”, Yohei Haketa, Kaifu Komatsu, Hiroi Sei, Hiroki Imoba,
Wataru Ota, Tohru Sato, Yu Murakami, Hiroki Tanaka, Nobuhiro Yasuda,
Norimitsu Tohnai, Hiromitsu Maeda, Chem. Sci. 15(3), 964-973(2024).

“Intersystem Crossing as Vibronically Induced Phonon Emission and Absorption
Processes: A Unified View of Nonradiative Transitions in a Molecule

Bull”, Wataru Ota, Motoyuki Uejima, Naoki Haruta, Tohru Sato, Chem. Soc. Jpn.
97 (2), uoad020 (2024).

“Ion-Pairing Assemblies of Anion-Responsive Helical PtIl Complexes”, Yohei
Haketa, Maho Kawami, Wataru Ota, Tohru Sato, Hiromitsu Maeda, Org. Chem.
Front. 11 (23), 6651-6659 (2024).

“Synthesis of Substituent-Free Dioxadiaza circulene to Investigate Intermolecular
Interactions and Photophysical Properties”, Aoi Nakagawa, Wataru Ota, Takumi
Ehara, Yusuke Matsuo, Kiyoshi Miyata, Ken Onda, Tohru Sato, Shu Seki,
Takayuki Tanaka, Chem. Commun. 60 (99), 14770-14773 (2024).




I %& (2024)

(AMPIR D Z E 72 &)

“Magnetic Circular Dichroism of Luminescent Triarylmethyl Radicals”, Yohei
Hattori, Daiya Suzuki, Wataru Ota, Tohru Sato, Rapenne Gwénaél, Yoshitane
Imai, J. Phys. Chem. Lett. 15 (47), 11696-11700 (2024).

“Theoretical study on the mechanochemical reactivity in Diels—Alder reactions”,
Wakana Sakai, Lori Gonnet, Naoki Haruta, Tohru Sato, Michel Baron, Phys.
Chem. Chem. Phys. 26 (2), 873-878 (2024).

“Spontaneous-Symmetry-Breaking Charge Separation Induced by Pseudo-Jahn-
Teller Distortion in Organic Photovoltaic Material”, Takeaki Zaima, Wataru Ota,
Naoki Haruta, Motoyuki Uejima, Hideo Ohkita, Tohru Sato, J. Phys. Chem. Lett.
14(43), 9706-9712 (2023) .

2016 FFEEHA 2 v ¥ a— F LR EaE
SRR 23 48 3 H BRMNZE B2 Erasumus Mundus Scholar
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[X4] | Kenji Matsuda
(4] | Professor (Adjunct Professor)
[F7jg] | Fukui Institute for Fundamental Chemistry
[WF4255] | Room A4-321, Katsura Campus
(EEEEE] | 075-383-2738
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kmatsuda@sbchem.kyoto-u.ac.jp

http://www.sbchem.kyoto-u.ac.jp/matsuda-lab

Physical Organic Chemistry

Physical organic chemistry for molecular electronics and highly functional materials

Physical Organic Chemistry, Photochromism, Molecular Electronics,
Supramolecular Assemblies, Open-Shell Molecules

B. S., Chemistry, Graduate School of Science, The University of Tokyo (1992)
M. S., Chemistry, Graduate School of Science, The University of Tokyo (1994)
Ph. D., Chemistry, Graduate School of Science, The University of Tokyo (1997)

Doctor of Science from the University of Tokyo

Assistant Professor, Department of Chemistry, The University of Tokyo, 1994-1995
Assistant Professor, Institute for Fundamental Research of Organic Chemistry,
Kyushu University, 1995-1998

Assistant Professor, Department of Chemistry and Biochemistry, Kyushu University,
1998-2004

Associate Professor, Department of Chemistry and Biochemistry, Kyushu University,
2004-2008

Professor, Department of Synthetic Chemistry and Biological Chemistry, Kyoto
University, 2008-present

JSPS researcher, University of Illinois, USA, 2001-2002

PRESTO research project leader, 2003-2007

Invited Professor, University of Rennes 1, France, 2011

Invited Professor, ENS Cachan, France, 2015

Chemical Society of Japan, American Chemical Society, The Japanese
Photochemistry Association, The Society of Physical Organic Chemistry, Japan,
The Society of Synthetic Organic Chemistry, Japan, Kinka Chemical Society,
The Japan Society of Applied Physics

Executive Director, The Japanese Photochemistry Association (2022-2025)
Secretary General (Executive Director), The Society of Physical Organic
Chemistry, Japan (2022-2024)

Chairman of Electronics Division, Kinka Chemical Society (2018-2021)

1. K. Satake, N. Ootsuki, K. Higashiguchi, K. Matsuda, NIR-Responsive Double
Closed-Ring Isomer of a Diarylethene Fused Dimer Synthesized by Stepwise
Photochemical and Oxidative Cyclization Reaction, J. Am. Chem. Soc. 147, 9653 (2025)

2. T. Aoki, H. Sotome, D. Shimizu, H. Miyasaka, K. Matsuda, Propeller-Shaped Blatter-Based
Triradicals: Distortion-Free Triangular Spin System and Spin-State-Dependent

_4_
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Photophysical Properties, Angew. Chem. Int. Ed. 64, e202418655 (2025).

3. D. Shimizu, H. Sotome, H. Miyasaka, K. Matsuda, Optically Distinguishable
Electronic Spin-isomers of a Stable Organic Diradical, ACS Cent. Sci. 10, 890 (2024)

4. Y. Hiroyasu, K. Higashiguchi, C. Shirakata, M. Sugimoto, K. Matsuda, Kinetic
Analysis of the Photochemical Paths in Asymmetric Diarylethene Dimer, Chem.
Eur. J. 29, €202300126. (2023)

5. Y. Nakakuki, T. Hirose, H. Sotome, M. Gao, D. Shimizu, R. Li, J. Hasegawa,
H. Miyasaka, K. Matsuda, Doubly Linked Chiral Phenanthrene Oligomers for
Homogeneously r-Extended Helicenes with Large Effective Conjugation Length,
Nat. Commun. 13, 1475 (2022).

Inoue Research Award for Young Scientists, 1999

Chemical Society of Japan Award for Young Scientist, 2004
Nozoe Memorial Award for Young Scientist, 2006

Teaching Award, School of Engineering, Kyushu University, 2008
Japanese Photochemistry Association Award, 2016
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kmatsuda@sbchem.kyoto-u.ac.jp

http://www.sbchem.kyoto-u.ac.jp/matsuda-lab

Physical Organic Chemistry

Physical organic chemistry for molecular electronics and highly functional materials

Physical Organic Chemistry, Photochromism, Molecular Electronics,
Supramolecular Assemblies, Open-Shell Molecules

B. S., Chemistry, Graduate School of Science, The University of Tokyo (1992)
M. S., Chemistry, Graduate School of Science, The University of Tokyo (1994)
Ph. D., Chemistry, Graduate School of Science, The University of Tokyo (1997)

Doctor of Science from the University of Tokyo

Assistant Professor, Department of Chemistry, The University of Tokyo, 1994-1995
Assistant Professor, Institute for Fundamental Research of Organic Chemistry,
Kyushu University, 1995-1998

Assistant Professor, Department of Chemistry and Biochemistry, Kyushu University,
1998-2004

Associate Professor, Department of Chemistry and Biochemistry, Kyushu University,
2004-2008

Professor, Department of Synthetic Chemistry and Biological Chemistry, Kyoto
University, 2008-present

JSPS researcher, University of Illinois, USA, 2001-2002

PRESTO research project leader, 2003-2007

Invited Professor, University of Rennes 1, France, 2011

Invited Professor, ENS Cachan, France, 2015

Chemical Society of Japan, American Chemical Society, The Japanese
Photochemistry Association, The Society of Physical Organic Chemistry, Japan,
The Society of Synthetic Organic Chemistry, Japan, Kinka Chemical Society,
The Japan Society of Applied Physics

Executive Director, The Japanese Photochemistry Association (2022-2025)
Secretary General (Executive Director), The Society of Physical Organic
Chemistry, Japan (2022-2024)

Chairman of Electronics Division, Kinka Chemical Society (2018-2021)

1. K. Satake, N. Ootsuki, K. Higashiguchi, K. Matsuda, NIR-Responsive Double
Closed-Ring Isomer of a Diarylethene Fused Dimer Synthesized by Stepwise
Photochemical and Oxidative Cyclization Reaction, J. Am. Chem. Soc. 147, 9653 (2025)

2. T. Aoki, H. Sotome, D. Shimizu, H. Miyasaka, K. Matsuda, Propeller-Shaped Blatter-Based
Triradicals: Distortion-Free Triangular Spin System and Spin-State-Dependent
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Photophysical Properties, Angew. Chem. Int. Ed. 64, €202418655 (2025).

3. D. Shimizu, H. Sotome, H. Miyasaka, K. Matsuda, Optically Distinguishable
Electronic Spin-isomers of a Stable Organic Diradical, ACS Cent. Sci. 10, 890 (2024)

4. Y. Hiroyasu, K. Higashiguchi, C. Shirakata, M. Sugimoto, K. Matsuda, Kinetic
Analysis of the Photochemical Paths in Asymmetric Diarylethene Dimer, Chem.
Eur. J. 29, €202300126. (2023)

5. Y. Nakakuki, T. Hirose, H. Sotome, M. Gao, D. Shimizu, R. Li, J. Hasegawa,
H. Miyasaka, K. Matsuda, Doubly Linked Chiral Phenanthrene Oligomers for
Homogeneously r-Extended Helicenes with Large Effective Conjugation Length,
Nat. Commun. 13, 1475 (2022).

Inoue Research Award for Young Scientists, 1999

Chemical Society of Japan Award for Young Scientist, 2004
Nozoe Memorial Award for Young Scientist, 2006

Teaching Award, School of Engineering, Kyushu University, 2008
Japanese Photochemistry Association Award, 2016
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075-383-2561
teramura.kentaro.7r@kyoto-u.ac.jp
http://www.moleng.kyoto-u.ac.jp/~moleng_04/
i AL
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PR 14E(19994)3H
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200546 H-20064E11H
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20064:12H-2007443H
20074E4H-20114:3H

20094E4H-20114E3H
20114E4H-20134E3H

20114E10H-20154E3H
201344H-20214:11H
20214:12H-

20124:2H- 20124:5H
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1. Enhanced photocatalytic conversion of COz by H20 over Ag@Cr-cocatalyst-
modified ZnTaz0¢
Kawata, Kio; Iguchi, Shoji; Naniwa, Shimpei; Nishimoto, Masamu; Teramura, Kentaro
ACS Catal. (2025), 15, 4081-4088. Selected as a front cover
DOI: 10.1021/acscatal.4c06530
Supplementary Cover
DOI: 10.1021/acscatal.4c06530
ChemRxiv (2024)
DOI:10.26434/chemrxiv-2024-pn3xw
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2. Ag co-catalyst prepared by ultrasonic reduction method for efficient
photocatalytic conversion of COz2 with H20 using ZnTa20s photocatalyst
Kawata, Kio; Iguchi, Shoji*; Naniwa, Shimpei; Tanaka, Tsunehiro; Nishimoto,
Masamu; Teramura, Kentaro*

Catalysis Science & Technology (2024), 14(21), 6207-6214.
DOI: 10.1002/cctc.202400871

ChemRxiv (2024), 1-36.

DOI: 10.26434/chemrxiv-2024-1j428

3. Fourteen-membered macrocyclic cobalt complex for low-concentration
COz2 electrolysis with high faradic efficiency towards CO
Inada, Takeshi; Iguchi, Shoji*; Moriya, Makoto; Ohyama, Junya; Nabae,
Yuta;Naniwa, Shimpei; Tanaka, Tsunehiro; Teramura, Kentaro*
Catalysis Science & Technology (2024), 14(2), 391-396.
DOI: 10.1039/D3CY01177A
ChemRxiv (2023), 1-4.
DOI: 10.26434/chemrxiv-2023-0Ocrqz

4. Mg-doped SrTiOs photocatalyst with Ag-Co cocatalyst for enhanced
selective conversion of COz to CO using H20 as the electron donor
Nakamoto, Takechi; Iguchi, Shoji*; Naniwa, Shimpei; Tanaka, Tsunehiro;
Teramura, Kentaro*

Catalysis Science & Technology (2023), 13(15), 4534-4541
DOI: 10.1039/d3cy00576¢

ChemRxiv (2023), 1-40

DOI: 10.26434/chemrxiv-2023-x7zgc

5. Kinetic Study of Heterogeneous Photocatalytic COz Reduction:
Development of a General Formula for Relations between Activity and
Reaction Conditions
Morishita, Masashige; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka,
Tsunehiro; Teramura, Kentaro*

ACS Catalysis (2023), 13(10), 6966-6973
DOI: 10.1021/acscatal.2c05823
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Hirofumi Sato

Professor

Department of Molecular Engineering, Graduate School of Engineering
A4-026

075-383-2548

075-383-2799

hirofumi@moleng.kyoto-u.ac.jp
http://www.riron.moleng.kyoto-u.ac.jp/

Theoretical Chemistry, Quantum Chemistry, Statistical Mechanics
Theoretical Chemistry, Physical Chemistry

Chemical reaction, Self-assembly, Solvation

March 1993, Master of Sci., Graduate School of Science, Kyoto University
May 1996, Doctor of Sci., Graduate School of Science, Kyoto University

Doctor of Science from Kyoto University

August 1996, Research Associate (Assistant Professor), Institute for Molecular
Science, Okazaki National Research Institutes

May 2002, Lecturer, Graduate School of Engineering, Kyoto University

May 2004, Associate Professor,

July 2010, Professor, Graduate School of Engineering, Kyoto University

April 2019-March 2023, Director, Fukui Institute for Fundamental Chemistry
June 2004-December 2004, Academic Visitor, PTCL, Oxford University

The Chemical Society of Japan, Japanese Association for Molecular Science,

Japanese Society of Theoretical Chemistry, The Japan Association of Solution
Chemistry

Director (2022-2024), The Chemical Society of Japan

Executive Director (2012-2014, 2020-2022, 2024-2026), Committee member
(2012-2016, 2018-2022), Japanese Association for Molecular Science

Vice president, Japan Society of Theoretical Chemistry (2019-2021)

Committee member, The Japan Association of Solution Chemistry (2015-)

1. Kosuke Imamura, Daisuke Yokogawa, and Hirofumi Sato, “Recent developments
and applications of RISM-SCF-cSED: A hybrid model of quantum chemistry
and integral equation theory of molecular liquids”, J. Chem. Phys., 160,
050901 (2024).

2. Satoshi Takahashi, Satoru Iuchi, Shuichi Hiraoka, and Hirofumi Sato,
“Theoretical and computational methodologies for understanding coordination
self-assembly complexes”, Phys. Chem. Chem. Phys., 25, 14659 (2023).

3. Kaho Nakatani, Masahiro Higashi, and Hirofumi Sato, “Extraction of local
spin-coupled states by second quantized operators”, J. Chem. Phys., 157,
014112 (2022).

4. Yuichiro Yoshida, Satoru Iuchi, and Hirofumi Sato, “A quantum chemical
model for a series of self-assembled nanocages: the origin of stability behind
the coordination-driven formation of transition metal complexes up to
[M12L.24]24+”, Phys. Chem. Chem. Phys., 23, 866-877 (2021).

The Academic Award, The Japan Association of Solution Chemistry (2009);
Morino Foundation for Molecular Science (2008); The Award for the Young
Distinguished Scientist of the Japan Society for Molecular Science (2006); The
Chemical Society of Japan Award for Young Chemists (2002)
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H. Ohkita, “Interface Engineering for Ternary Blend Polymer Solar Cells Based
on Spectroscopic and Device Analyses”, Polym. J., in press.

H. Ohkita, “Future Perspective of Polymer Solar Cells Based on Recent In-
Depth Understanding of Photovoltaic Conversion Mechanism”, JSAP Rev., 2022,
220207_1-7 (2022).

S. Natsuda, T. Saito, R. Shirouchi, Y. Sakamoto, T. Takeyama, Y. Tamai, H.
Ohkita, “Cascaded Energy Landscape as a Key Driver for Slow Yet Efficient
Charge Separation with Small Energy Offset in Organic Solar Cells”, Energy
Environ. Sci., 15, 1545-1555 (2022).

T. Fukuhara, K. Yamazaki, T. Hidani, M. Saito, Y. Tamai, I. Osaka, H. Ohkita,
“Molecular Understanding of How the Interfacial Structure Impacts the Open-
Circuit Voltage of Highly Crystalline Polymer Solar Cells”, ACS Appl. Mater.
Interfaces, 13, 34357-34366 (2021).

Y. Cho, H. D. Kim, J. Zheng, J. Bing, Y. Li, M. Zhang, M. A. Green, A.
Wakamiya, S. Huang, H. Ohkita, A. W. Y. Ho-Baillie, “Elucidating Mechanisms
behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar
Cells”, ACS Energy Lett., 6, 925-933 (2021).

20034F PG E o FrasEilg

20044F PR 164E 1 HA LA 2BCSIE

20074F 20074 EE A2 e 52 B

20094F Eo TIFERBLMF vy 79 A 0 74 ANl
20104F S EDNITRBGECE AR TG E

20184 2018 ML A HEE

20234 20234 EEE S TFREH

B

i




I

#HE (2024)

(4) HEHE
(K4 (50237%)] | i #(SL) L&)
Uik41] | 2z
UinlE] | BEERAFZEERM
(WFEZ] | 210
(iEEERE] | 075-711-7849
[BEFA =17 FLZ] | tsato@fukui.kyoto-u.ac.jp
(F—2_=2] | Hfiih
(e8] | P ke
(BAfEDWZEHYE] | HREAH LI PGS, BEREME 0+ 0 BllGw ekt
(MMENEX—7— F] | IREHAIEH, AHEEL, Jahn-Teller®h 4
(“£HE)] | “PRROME3S H BLEP R R AR LAAWHFERt o0 1 LA il WA E 17
(“Afr] | (T2
(MERE] | PRk 9FF 4H  HARZEMHRB R HIESE 5 (PD) (s AFEREA L AR AT
PRI0E TH  RURRAER AR TAAWE Rk LA RS T
PIRISEION  SCBREAEMRAETIO =7 7 4 L) v 7 K)
PIKI64E 3H BRI BRI £ v & — BRIt e Bl
P23 1TH  BERRSER A LAEEga Rt oy - LAr R 4k
PI30ME 2H  BEBRSAEE R R v & — BRI AR %
W56 AR SRS RIRR R Y v —J
BlfEIc®R %
(FrE4x] | HRa v o —8{ds, HRUYES, 79—V v - F /) Fa2—7 - 777 2 VR,
HARYP A2, ISP A2 A REELS i L AE e e
[2£275%)]) | Jahn-Teller Steering Committee (2009-)
[F7E, 22w sC] | “Enhanced Solid-State Phosphorescence of Organoplatinum 7 -Systems by Ion-
(G2 5 FLIN) | Pairing Assembly”, Yohei Haketa, Kaifu Komatsu, Hiroi Sei, Hiroki Imoba,

(“AMPIFR D Z E 7 &)

Wataru Ota, Tohru Sato, Yu Murakami, Hiroki Tanaka, Nobuhiro Yasuda,
Norimitsu Tohnai, Hiromitsu Maeda, Chem. Sci. 15(3), 964-973(2024).

“Intersystem Crossing as Vibronically Induced Phonon Emission and Absorption
Processes: A Unified View of Nonradiative Transitions in a Molecule

Bull”, Wataru Ota, Motoyuki Uejima, Naoki Haruta, Tohru Sato, Chem. Soc. Jpn.
97 (2), uoad020 (2024).

“Ion-Pairing Assemblies of Anion-Responsive Helical PtIl Complexes”, Yohei
Haketa, Maho Kawami, Wataru Ota, Tohru Sato, Hiromitsu Maeda, Org. Chem.
Front. 11 (23), 6651-6659 (2024).

“Synthesis of Substituent-Free Dioxadiaza circulene to Investigate Intermolecular
Interactions and Photophysical Properties”, Aoi Nakagawa, Wataru Ota, Takumi
Ehara, Yusuke Matsuo, Kiyoshi Miyata, Ken Onda, Tohru Sato, Shu Seki,
Takayuki Tanaka, Chem. Commun. 60 (99), 14770-14773 (2024).

“Magnetic Circular Dichroism of Luminescent Triarylmethyl Radicals”, Yohei Hattori,
Daiya Suzuki, Wataru Ota, Tohru Sato, Rapenne Gwénaél, Yoshitane Imai, J. Phys.
Chem. Lett. 15 (47), 11696-11700 (2024).

“Theoretical study on the mechanochemical reactivity in Diels-Alder reactions”,
Wakana Sakai, Lori Gonnet, Naoki Haruta, Tohru Sato, Michel Baron, Phys.
Chem. Chem. Phys. 26 (2), 873-878 (2024).

“Spontaneous-Symmetry-Breaking Charge Separation Induced by Pseudo-Jahn-
Teller Distortion in Organic Photovoltaic Material”, Takeaki Zaima, Wataru Ota,
Naoki Haruta, Motoyuki Uejima, Hideo Ohkita, Tohru Sato, J. Phys. Chem. Lett.
14(43), 9706-9712 (2023) .
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S. Kosaka, K. Kurebayashi, N. Yamato, H. Tanaka, N. Haruta*, M. Yamamoto*,
“Thiyl chemistry: cysteine-catalyzed maleate isomerization via aqueous thiyl
radical processes”, Green Chem. 27, 2743 (2025).

H. Masai, M. Koshimizu, H. Kawamoto, H. Setoyama, Y. Onodera, K. Ikeda,
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“Combinatorial characterization of metastable luminous silver cations”, Sci.
Rep. 14, 4638 (2024).

W. Sakai, L. Gonnet, N. Haruta, T. Sato, M. Baron, “Theoretical study on
mechanochemical reactivity in the Diels-Alder reactions”, Phys. Chem. Chem.
Phys. 26, 873 (2024).

W. Sakai, L. Gonnet, N. Haruta, T. Sato, M. Baron, “Origin of Stereoselectivity
in a Mechanochemical Reaction of Diphenylfulvene and Maleimide”, J. Phys.
Chem. A 127, 5790 (2023).

T. Kato, N. Haruta, T. Sato, “Vibronic Coupling Density: Understanding
Molecular Deformation”, Springer, 2021.
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1. Masanori Sakamoto, Yoshiyuki Mizuhata, Wataru Ota, Tatsuki Konishi,
Hirokazu Tahara, Kenji Kamada, Tohru Sato, Orbital Hybridisation of m-conjugated
Ligands with Atomically Precise Metal Clusters for Enhanced Two-Photon
Absorption, J. Am. Chem. Soc. 147(27), 23451-23457(2025).

2. Rui Xiaotian, Wataru Ota, Tohru Sato, Minori Furukori, Yasuo Nakayama,
Takuya Hosokai, Eri Hisamura, Kazuhiro Nakamura, Kenshiro Matsuda,
Kohei Nakao, Andrew P. Monkman, Ken Albrecht, Carbazole-Dendronized
Luminescent Radicals, Angew. Chem. Int. Ed. 62, 582-590(2023).

3. Masanori Sakamoto, Masaki Hada, Wataru Ota, Fumihiko Uesugi, Tohru Sato,
Localized Surface Plasmon Resonance Inducing Cooperative Jahn--Teller Effect
for Ultrafast Crystal Phase Change in a Nanocrystal, Nat. Commun. 14, 4471 (2023).

4. Wataru Ota, Motoyuki Uejima, Tohru Sato, Role of Vibronic Couplings and
Energy Gap in the Internal Conversion Process of a Molecule , Bull. Chem.
Soc. Jpn.. 96, 582 (2023).
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1. T. Nakamura, Y. Tsuruta, A. Egi, H. Tanaka, Y. Nishibayashi, K. Yoshizawa
“Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed by
Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes”
Inorg. Chem. 64, 9124-9136 (2025).

2. T. Nakamura, G. Schoendorff, D.-S. Yang, M. S. Gordon, “Systematic
Investigation of Electronic States and Bond Properties of LnO, LnO+*, LnS, and
LnS+ (Ln = La-Lu) by Spin-Orbit Multiconfiguration Perturbation Theory.” J.
Chem. Theory Comput, 21, 267-282 (2025).

3. A. Egi, H. Tanaka, T. Nakamura, K. Arashiba, Y. Nishibayashi, K. Yoshizawa
“Computational screening of PCP-type pincer ligands for Mo-catalyzed nitrogen
fixation” Bull. Chem. Soc. Jpn., 97, uoae041, (2024).

4. T. Nakamura, B. B. Dangi, L. Wu, Y. Zhang, G. Schoendorff, M. S. Gordon,
D.-S. Yang, “Spin-orbit coupling of electrons on separate lanthanide atoms of
Pr202 and its singly charged cation” J. Chem. Phys. 159, 244303 (2023).

5. T. Nakamura, D. G. Fedorov, “The catalytic activity and adsorption in
faujasite and ZSM-5 zeolites: the role of differential stabilization and charge
delocalization”, Phys. Chem. Chem. Phys. 24, 7739-7747 (2022).

6. T. Nakamura, T. Yokaichiya, D. G. Fedorov, J. Phys. Chem.A 126, 957-969 (2022).

7. T. Nakamura, T. Kudo, “Comparison of group 14 elements in sp3 and sp2
environment by fragment structure energy analysis”, J. Comput. Chem. 42,
1817-1825 (2021).

8. T. Nakamura, T. Yokaichiya, D. G. Fedorov, “Quantum-Mechanical Structure
Optimization of Protein Crystals and Analysis of Interactions in Periodic
Systems”, J. Phys. Chem. Lett. 12, 8757-8762 (2021).
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20064 - 20124 International Academy of Quantum Molecular Science

(TAQMS, Menton) Secretary General

20044 - 20124 Asia Pacific Association of Theoretical & Computational

Chemists (APATCC) President

1. Validation of Long-Range-Corrected LC2gau Functional for Koopmans’
Prediction of Core and Valence Ionization Energies with Diverse Data
Kimihiko Hirao, Dae-Hwan Ahn, Jong-Won Song, Bun Chan, Takahito
Nakajima, J. Phys. Chem.A 2025 129

2. Theoretical study of 1s, 2s, and 2p core electron binding energies of third-
period elements calculated by the ASCF method, Koopmans’ theorem, and
Slater’s transition state theory within the framework of Hartree-Fock and
Kohn-Sham theory, Kimihiko Hirao, Dae-Hwan Ahn, Jong-Won Song,

Bun Chan, Takahito Nakajima, J. Phys. Chem.A 2025 129

3. Exploiting the Correlation between the 1s, 2s, and 2p Energies for the
Prediction of Core-Level Binding Energies of Si P, S, and Cl species.
Kimihiko Hirao, Takahito Nakajima, Bun Chan
J. Phys. Chem. A “Trygve Helgaker Festschrift” 2024 128 (33), 6879-6897.

4. Long-range corrected density functional theory including a two-Gaussian
Hartree-Fock operator for high accuracy core-excitation energy calculations of
both the 2nd- and 3rd-row atoms (LC2gau-core-BOP)

Ahn, Dae-Hwan; Nakajima, Takahito; Hirao, Kimihiko; Song, Jong-Won
Journal of Chemical Theory and Computation, 2024 20 (16), 7113-7125.
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5. Neighbor Effect on Conformational Spaces of Alanine Residue in Azapeptides,
Mouna El Khabchi, Shi-Wei Liu, Hua-Jun Shawn Fan, Mohammed Mcharfi,
Mohammed Benzakour, Jong-Won Song, Ho-Jin Lee, and Kimihiko Hirao,
Heliyon 10 (12) 2024

6. The verification of delta SCF and Slater’s transition state theory for the
calculation of core ionization energy. Hirao, K.; Nakajima, T.; Chan, B.; Lee,
H-J. J.Comput.Chem. 2024, 45, 183-192.

7. The core-level 2s and 2p binding energies of third-period elements (P, S,
and Cl) calculated by Hartree-Fock and Kohn-Sham DSCF theory, Hirao, K.;
Nakajima, T.; Chan, B. J. Phys. Chem. A, 2023 127, 7954-7963.

8. The core ionization energies calculated by delta SCF and Slater’s transition
state theory, Kimihiko Hirao, Takahito Nakajima, Bun Chan, and H-J. Lee,
J.Chem.Phys. 2023, 158, 016112

9. Higher-Order Transition State Approximation,Takahito Nakajima, Kimihiko
Hirao, and Bun Chan, J.Chem.Phys. 2022 156 114112.

10.Is charge-transfer excitation through a polyalkane single-bond chain an
intramolecular charge-transfer? EOM-CCSD and LC-BOP study, Jong-Won
Song and Kimihiko Hirao, Chem.Phys.Lett. 2022 796 139563 (6 pages)

11.Vertical Ionization Potential Benchmarks from Koopmans Prediction of Kohn-
Sham Theory with Long-Range Corrected (LC) Functional Kimihiko Hirao,
Han-Seok Bae, Jong-Won Song, and Bun Chan, JPCM (Enrico Clementi
Memorial Issue) J. Phys.: Condens. Matter 2022 34 194001 (9 pages)

12.Taking Advantage of a Systematic Energy Non-linearity Error in Density
Functional Theory for the Calculation of Electronic Energy Levels,
Bun Chan, William Dawson, Takahito Nakajima, Kimihiko Hirao, J. Phys.
Chem.A 2021 125 (49), 10507-10513

13.An Improved Slater’s Transition State Approximation
Kimihiko Hirao, Takahito Nakajima, and Bun Chan, J.Chem.Phys. 2021 155
034101.

14.Koopmans-Type Theorem in Kohn-Sham Theory with Optimally Tuned Long-
Range Corrected (LC) Functionals, Kimihiko Hirao, Han-Seok Bae, Jong-Won
Song, and Bun Chan, J. Phys. Chem. A 2021, 125, 16, 3489-3502.
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1. Theoretical Chemistry for Experimental Chemists — Pragmatics and
Fundamentals” ({13, Springer Nature, Singapore, 2020).

2. Organic Semiconductors for Optoelectronics (3:3%, John Wiley & Sons, Ltd.,
Chichester, West Sussex, UK, 2021)
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Fig. 1 (a) TBSMCN, (b) the calculated and experimental[2] fluorescence spectra.
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Figure 1Calculated and experimental MCD spectrum of (a) PyBTM and (b) F2ZPyBTM [5].
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Taiji Nakamura

Program-Specific Assistant Professor

1. Summary of the research of the year

Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed

by Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes

Ammonia serves as an essential feedstock for a wide range of chemical products, including
fertilizers and pharmaceuticals. A current industrial method of synthesizing ammonia is the
Haber-Bosch process, in which hydrogen gas and atmospheric nitrogen are used as source
materials. The method of nitrogen fixation employing heterogeneous catalysts is highly efficient,
but places a heavy burden on the environment due to the requirement for harsh reaction
conditions in addition to using natural gas to supply hydrogen gas.l In contrast, nitrogen
fixation by homogeneous catalysts has been widely studied using Fe and Mo complexes whose
electronic properties allow nitrogen fixation under mild conditions.2 Nishibayashi and coworkers
reported an improvement in activity through successful catalytic nitrogen fixation using an Mo
complex with a PCP pincer ligand (PCP = 1,3-bis(di-tert-butylphosphinomethyl)benzimidazole-2-
ylidene) where 4,350 equivalents of NH3 were produced based on the Mo complex (Scheme 1).3
The improvement is presumably due to the proton-coupled electron transfer (PCET) reaction

in which the complex of electron source and =
Catal
N, + 6H' + 66" —— s INH,

proton source acts as a PCET mediator that THE 1t

(1 atm)
provides both an electron and a proton to 05
(b) She
. . | _ o =
the Mo complex.3:4 In this study, nitrogen N Vi 2% or —PBu,
QN)—;F'-'—I = N)_'.!r ~I
fixation reactions catalyzed by a mononuclear | N /b
Buz 05 Byl
molybdenum nitride (Mo=N) complex bearing NH, Buyp :.‘,l
<\ =M JLFEU?
. . —,
a PCP-type pincer ligand, [MoI(N)(PCP)], = )/ b \
. . . —|-PBu, "
were investigated by quantum chemical h"')_.-,ﬁ’\_l NFH[;P'BU?
o T >—Mo
. . . P N o s
calculations. Reaction energy profiles were 05 ‘Bl i g
. . rBu.{ ,I"l rBU?
constructed by density functional theory (DFT) 'hi_«;i;wau; H\EIH ‘/Lau'
: : : ! NH —-P'Bu e
calculations with the Gaussian 09 = a
package, N~ el
. .- 0.5N, N 7™
and electronic structure on transition metals 7
Fig. 1. (a) Catalytic nitrogen fixation reaction with 6 proton

and the orbital energy levels were analyzed sources and 6 electron sources. (b) A possible mechanism

by state-average multi-configurational self- of catalytic ammonia formation in the presence of Mo-PCP
complex as a catalyst.
consistent field (SA-MCSCF) calculations with
GAMESS program.
Specifically, we analyzed the imide formation of [MoI(N)(PCP)] yielding an Mo-imide complex
[MoI(NH)(PCP)] in detail since this reaction is proposed as a rate-limiting step in the catalytic

cycle. In this study, 2,4,6-collidinium (ColH+*) was employed as protonation agent, while
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metallocenes Cp2MII and Cp*2MII (M =V, Cr, Mn, Fe, Co, and Ni) were employed as reductant.
Computational screening of the metallocenes Cp2M!Il and Cp2*MI! has identified that Cp*2Crll
and Cp*2Coll as promising reductants for the imide formation of [MoI(N)(PCP)] from a
thermodynamic aspect. The calculated free energy change (A G298) showed that the imide
formation is sufficiently exergonic when using Cp*2Crll and Cp*2Coll. In the screening of
protonated metallocenes for PCET mediators, [Cp*2CrII]H+ and [Cp*2Cov]H+ were highlighted.
The reactivity of Cp*2Crll, Cp*2Coll, [Cp*2CrlJH+, and [Cp*2ColJH+ can be attributed to the
stability of their +3 oxidization states with electronic configurations of 3d3 for [Cp*2Crlll]+ and
3d6 for [Cp*2Coll]+.

m § I+ i 1+

'Bu; y P'Buz ﬁi =~
@:.)‘“JV Z‘—T}i\ * l'?'/ [PathB} /\/_—”"7 fz%t—’g\ ’ /fl;l\

i LPBu; H \_prBuQ
! [Mol(N)(PCP)] Cp*,M" ColH* [Mol(NH)(PCP)]* Cp*,M!

PCET mediator

(Path A) formation
Vm? jfé:;i\
ET| (Path C) @’Q | ET| (Path B)
'Bug
_____ [MoI{N}{PCP}] [Cp* 2M"]H i
v PCET v

(Path A)

i T+ 1+ | P]

N "Bu. @:‘ = N
N/—IV ’ 7 | /-‘r 'Bu, .
@;}p"oxl M NZ {F'ath C) )—le |

| [Mol(NH)(PCP)] - [Cp*, MM ColH* [Mol(NH)(PCP)] [c;p M

Fig. 2. Imide formation of molybdenum nitride complex [MoI(N)(PCP)] with ColH* and Cp*2M!. 1a: Protonation of
Cp*2M! by ColH+. 1b: PCET from [Cp*2M!IJH* to [MoI(N)(PCP)]. 2a: Protonation of [MoI(N)(PCP)] by ColH+. 2b:
Reduction of [MoI(NH)(PCP)]+ by Cp*2M!. 3a: Reduction of [MoI(N)(PCP)] by Cp*2MlL 3b: Protonation of
[MoI(N)(PCP)]- by ColH+.

Depending on the metal element in the metallocenes, the imide formation of [MoI(N)(PCP)] can
proceed by the proton-coupled electron transfer (PCET) or stepwise proton/electron transfer
(PT/ET) mechanism. In the PCET mechanism described as Path A, Cp*2Crll or Cp*2Coll is
first protonated by ColH+*, and the resulting protonated metallocene acts as a PCET mediator
to imidize [MoI(N)(PCP)]. On the other hand, the stepwise PT from ColH* and ET from the
metallocenes were investigated as Path B (PT — ET) and Path C (ET — PT). Path C is not a
dominant pathway for both Cp*2Crll and Cp*2Colll, due to the significant endergonic ET process
of [MoI(N)(PCP)]. For Cp*2Crll, Path A (PCET) is more favorable since both the formation of
[Cp*2CrllH+ and the subsequent PCET reaction are exergonic. In this pathway, the protonation
of [Cp*2Crll] is the rate-limiting step having an activation free energy of 12.3 kcal mol-!.
Considering the thermal equilibrium between [Mol(N)(PCP)] and [MoI(NH)(PCP)]+ in the
reaction solution, Path B was not considered dominant because the concentration of [Mol(NH)

(PCP)]+ formed by PT is expected to be low. The low concentration of a catalytic amount of
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[MoI(N)(PCP)] also reduces the probability of path B, where [MoI(N)(PCP)] is initially protonated
by ColH+*. Also, the concentration of the catalyst [MoI(N)(PCP)] is much lower than that of the
reductant [Cp*2Crll] in the experimental conditions, suggesting that the reductant should have
more opportunities to encounter the protonating reagent ColH+ than the catalyst. For Cp*2Coll,
both Path A (PCET) and Path B (PT — ET) are feasible. Path B might be somewhat more

(@) =z "

cr' [3.84)

- " ;
. ,@,
c [3.94) v, [0.06]
i 1.34 A N
15 ¢ - <, [0.05] 134 A ,.—”L-}p-’auz
113 A . N, Mol T+
10 | 1928 —|ll-p'Bu, N o I
& N |H/ * “—F  [0.10] ¢t 3.01]
'E 5| @_N)—MJ\'-I ‘Bus
- “P .01 5.0 ., [0.03]
8 By, S N
= 0| e 1034 .
r 05 0.0 vl T An
) 5 [Mol{N)}{PCP)] EQ1 N)_M”\
< + \—p/ I
[Cp*,CrH By, 10961
-10 } —_—
.95
EQ2 o
.15 L -12.9
[Mol(NH)(PCP)]
[Cp*.CH’
A e
(b) = !
e 1+
Co'l [0.87] "‘2’1'[ b
~ersC. Co'
+ ,—@.' YoM, i
p=—"clll F i [0.05] . ]
Co' [0.95) 1.30A " e
< 1.38 A rN P'BuU. Q l H [0.04] _S‘C.:E? -1+
15 9‘ 0.04 W52 o oss  q03a—v)
& E ] Q:I +—Mol -~ ’_|| P'Bu, Co' [0,01]
- 10 |91 ’_IIIPB“? fauz [ooe.] [a o1) @ Mol (0.04] ’@
E [Mol(N)(PCP)] ,;52 b 5 103" fﬁﬁz [095] !'\N
= | e ~[I-;P'Bu, A
T [Cp*, L,o]H Bu [0.01] 21 {"?f“»—lltl'o T52 " P'Bu,
2 ol b i v : {fl' Mo
= 0.9 0.0 ;—P 0 m] 21 g ol [Mol(NH)PCP)]
2 Bu, imy, [0.95) +
5 4 EQ1 = O Z ‘ .
g 51 57 [Cp*,Co]
B -5, 52 segebia
-10 4 EQ2 [Mol(NH)(PCP)) EQ2 -8.0
-15 - Cp*,Co

Fig. 3. Gibbs free energy diagrams along the reaction pathway of imide formation of [MoI(N)(PCP)] by (a) [Cp*2CrlJH+
and (b) [Cp*2Co!l]H+. Optimized structures of the reactant complex (EQ1), the intermediate complex (EQ2’), the product
complex (EQ2), and the transition states (TS, TS1 and TSZ2) are shown with bond lengths related to reaction coordinates
and the Mulliken spin densities on Cp*2Cr, Cp*2Co, Mo complex, and transferring H atom in square brackets.

favorable because its activation barrier and endergonicity are relatively lower than Path A. The
calculations for Cp*2Crll and Cp*2Coll revealed that the relative strength of proton accepting
ability between [Mol(N)(PCP)] and reductants would be one of the key factors determining the
reaction mechanism (PCET or stepwise PT/ET).

Tracing detailed electronic states along the reaction coordinates revealed that the metal
element in metallocenes can alter the catalytic reaction mechanism. Thus, the proper choice
of reductants is crucial to enhance the catalytic reactivity. In this study, the screening of
metallocenes and protonated metallocenes identified promising candidates for reductants and
PCET mediators. The improvement of the Mo-PCP catalytic system for nitrogen fixation will be
efficiently achieved by combining theoretical predictions with experimental investigations. We

believe that the screening protocol and reaction mechanism analysis employed in this study
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can help and accelerate the further development of protonation agents and reductants (PCET

mediators).
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2. MxRa
Kimihiko Hirao

Research Director

1. Summary of the research of the year

Theoretical Study of 1s, 2s, and 2p Core Electron Binding Energies of
Third-Period Elements

The binding energies (BEs) of the 1s, 2s, and 2p core electrons of third-period elements
were calculated using the ASCF method, Koopmans’ theorem, and Slater’s transition state
theory (STS), within the frameworks of Hartree-Fock (HF) and Kohn-Sham (KS) theory,
employing B3LYP and LCZgau-core-BOP (LC2gau) functionals. The total self-consistent field
(SCF) energy difference (ASCF) between neutral and cationic states was obtained by solving
the SCF equations with fractional occupation numbers. Energy functionals were plotted as a
function of continuously varying occupation numbers, and the validity of Koopmans’ theorem
and STS theory was assessed by analyzing the derivative of the energy functional with respect
to occupation number. The HF ASCF method reproduces the experimental core electron
binding energies (CEBEs) of third-period elements with reasonable accuracy. STS theory within
HF closely matches the ASCF values, though the errors relative to experimental results are
nearly identical to those of the ASCF approach. In contrast, the BSLYP ASCF method slightly
underestimates the experimental BEs of 1s and Z2p electrons and significantly underestimates

the 2s BEs, primarily due to self-interaction errors (SIEs) inherent in the functional. The LC2gau
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ASCF method effectively eliminates the SIEs for 2s electrons and provides BE values with
improved accuracy. Koopmans’ theorem holds well in the LC2gau framework, reproducing A
SCF results with reasonable accuracy. Interestingly, the error between ASCF and experimental
values is approximately equal in magnitude—but opposite in sign—to the error between
Koopmans’ theorem and ASCF, particularly for Is and 2s BEs. As a result of this error
cancellation, Koopmans’ approach with LCZ2gau predicts CEBEs closer to the experimental

values, achieving a high level of accuracy.

Development of the LC2gau-core DFT functional

In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian
attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy
core-excitation energies from s orbitals of the second-row atoms (1s —» 7* 1Is = ¢* Is —
n*, and 1s — Rydberg), but underestimates the core-excitation energies from 1s orbitals of the
third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to
LCgau-core-BOP. We named it LCZ2gau-core-BOP, which achieves a mean absolute error (MAE)
of 0.6 and 0.3 eV for core excitation energies of the second- and third-row atoms of the tested
small molecules, respectively. We found that the inclusion of the short-range interelectronic HF
exchange at a distance ranging from 0.2 to 0.6 a.u. contributes to the increase of performances
on ls orbital energy calculations of the second-row atoms, while the inclusion of more short-
range interelectronic HF exchange at a distance ranging from 0 to 0.2 a.u. does to the increase
of performance on 1s orbital energy calculations of the third-row atoms. It is notable that all
of these improvements were accomplished using flexible Gaussian attenuating HF exchange
inclusion. LC2gau-core-BOP shows deviations of less than 0.8 eV from experimental values for
all of the core-excitation energies of the tested medium-size molecules consisting of thymine,
oxazole, glycine, and dibenzothiophene sulfone. Moreover, by optimizing one parameter of the
OP correlation functional, LC2gau-core-BOP provides atomization energies over the G3 test set

with an accuracy comparable to that of BSLYP.

m— Experiment (from Ches. Phys. 347 p360 2008 )
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Original paper

I.

Validation of Long-Range-Corrected LLCZ2gau Functional for Koopmans’ Prediction of Core and
Valence lonization Energies with Diverse Data, Kimihiko Hirao, Dae-Hwan Ahn, Jong-Won
Song, Bun Chan, Takahito Nakajima, J. Phys. Chem. A 2025 129

. Theoretical study of 1s, 2s, and Z2p core electron binding energies of third-period elements

calculated by the ASCF method, Koopmans’ theorem, and Slater’s transition state theory
within the framework of Hartree-Fock and Kohn-Sham theory, Kimihiko Hirao, Dae-Hwan
Ahn, Jong-Won Song, Bun Chan, Takahito Nakajima, J. Phys. Chem. A 2025 129

. Exploiting the Correlation between the 1s, 2s, and 2p Energies for the Prediction of Core-

Level Binding Energies of Si P, S, and CI species, Kimihiko Hirao, Takahito Nakajima, Bun
Chan J. Phys. Chem. A “Trygve Helgaker Festschrift” 2024 128 (33), 6879-6897.

. Long-range corrected density functional theory including a two-Gaussian Hartree-Fock

operator for high accuracy core-excitation energy calculations of both the 2nd- and 3rd-row
atoms (LCZ2gau-core-BOP) Ahn, Dae-Hwan; Nakajima, Takahito; Hirao, Kimihiko; Song, Jong-
Won, Journal of Chemical Theory and Computation, 2024 20 (16), 7113-7125.
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A Monomeric Diarylstannanone with a Sn=0 Double Bond: Synthesis and
Characterization

A series of diarylstannylenes, (Rind)2Sn [Rind = 1,1,7,7-tetra-R1-3,3,5,5-tetra- R2-s-
hydrindacen-4-yl: EMind (a: R1=Et, R2=Me), Eind (b: R1=R2=Et), and MPind (c: R1=Me,
R2 = nPr)], has been obtained as purple to blue crystals by the reaction of SnX2 - dioxane
(X=Br or Cl) with two equiv. of (Rind)Li. The less bulky EMind-based stannylene, (EMnd)2Sn,
reacted with N20O gas to afford a 1,3,2,4-dioxadistannetane, (EMind)4Sn2(w-0)2, through the
dimerization of a stannanone, (EMind)2Sn=0. In contrast, a similar oxidation reaction using
the bulkier MPind-based stannylene, (MPind)2Sn, produced a hitherto unknown acid-base
free monomeric diarylstannanone, (MPind)2Sn=0, with an authentic Sn=0 double bond. The
stannanone was highly sensitive to air and moisture but remained thermally stable at room
temperature. Isolating as a pure single crystalline material proved challenging due to its highly-
reactive nature; however, its structural characteristics and bonding properties were discussed
based on both experimental findings and computational results. The Sn=0 double bond in the
stannanone exhibits a weaker and more polarized character compared to the Ge=0O double
bond in the diaryl germanone, (Eind)2Ge=0.
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Kazuo Takatsuka
FIFC Senior Rearch Fellow

1. Summary of the research of the year

Quantum mechanics, the Schrodinger equation in particular, is the single most fundamental
theory for theoretical chemistry. However, even one hundred years after its birth, understanding
and interpretation about quantum mechanics remain unsettled, with no tight consensus to this
day. The controversy often centers around the mysterious nature of the Schrodinger (wave)
function. I have therefore tried to reformulate the Schrodinger dynamics in three stages [1]
(the number referring to the papers cited below in the part of original papers); (1) Derivation
of the real-valued Schrodinger equation from scratch in a completely universal manner, (2)
Deriving the real-valued path integrals having an integral measure in contrast to the Feynman
kernel, and (3) Formulating a quantum stochastic path dynamics in the Ito stochastic differential
equation. The relevant new properties such as “detanglement” and interpretation about
quantum mechanics have followed.

This year is the 55th anniversary of the one of the most influential work by Whal on his
monumental molecular orbital studies.[2] We have updated one-electron view of chemical
bonds in terms of our proposed Energy Natural Orbitals (ENO) and its extension ENOX, which
extract orbital picture from correlated and/or excited state electronic wavefunctions, like the
Configuration Interaction wavefunctions. ENOX gives an electronic orbital representation of
the potential energy surfaces (PES) in such a way that the sum of the ENOX orbital energies is
equivalent to the PES energy.

We have made substantial progress in the theoretical treatment of nonadiabatic electron
wavepacket dynamics,[3,4,5] by studying a new state of small carbon cluster in excited states,
which follows the electronic states of diamond, graphite and graphene and fullerene and
carbon nanotubes. Many interesting characteristics have been identified theoretically and
computationally.

Each progress will be summarized below in little greater detail.

2. On the foundation of quantum mechanics

We have analyzed the Schrodinger dynamics and the Schrodinger function (or the so-called
wavefunction), from the viewpoint of conflict and compatibility between a distribution function
and dynamical paths. The following four analyses have been made. (1) The Schrodinger
equation is reconstructed from scratch in the real field only, without referring to Newtonian
mechanics nor optics. Only the very simple conditions such as the space-time translational
symmetry and the conservation of flux and energy are imposed on the factorization of the
density distribution in configuration space. The real-valued Schrodinger function attained
is naturally interpreted as a coherent distribution function of a two-dimensional vector. On

returning to the original complex-valued Schrodinger equation, it is readily understood why
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and how the imaginary number should arise in the very fundamental equation in the quantum
world, and we directly confirmed that the Schrédinger equation is physically consistent.

(2) The Langevin dynamics gives a path of a Brownian particle in contrast to the Gaussian
distribution function subjected to the diffusion equation. Likewise in quantum dynamics, we
formulate a single-event path dynamics, contrasting with the Schrodinger distribution function.
The path thus attained is referred to as one-world path, which represents, for instance, a path of
a singly launched electron in the double-slit experiment that leaves a spot at the measurement
board, while many of accumulated spots give rise to the fringe pattern. To do so, we start from
the Feynman-Kac formula to draw a relation between a stochastic dynamics and the parabolic
differential equations, to one of which the Schrodinger equation is transformed. We thus have
extracted the basic stochastic dynamics for individual single-event (one-world) dynamics.

(3) To highlight the roles of the flux and energy conservation as one of the central pillars for
the Schrodinger dynamics, we next have studied a path dynamics in an infinite dimensional
parameter space. We find that the quantum Maupertuis-Hamilton principle reveals manifolds
of symplectic structure in the parameter space on which the energy and flux to be conserved.
The classical-trajectory-like paths are driven by the coupled ordinary differential equations in a
parameter space, which is actually equivalent to propagating the Schrodinger function in space-
time.

(4) A detailed physical analysis over the space-time propagation of the Schrodinger function
is made from the viewpoint of the ultimate roles of classical paths. It is well known that the
standard semiclassical theory can be very well represented in terms of classical trajectories.
Yet, we show that such trajectory components are demanded to branch into many coherent
pieces beyond the semiclassical regime and dissolve into the deep dynamics of genuine full
quantum dynamics. We tracked how the inherent quantum natures like the Huygens-principle-

like properties are built in.

3. On the foundation of quantum mechanics

To elucidate the molecular electronic energy variation and to simultaneously track the
topography of the potential energy surface (PES) such as the potential basin, transition
states, and potential barriers in the study of chemical bond formation and relevant chemical
reactions, we have devised ENOX as an extension of the ENO (Energy Natural Orbital) so that
the total sum of the ENOX orbital energies exactly matches the PES energy, that is the sum
of the electronic energy and nuclear-nuclear repulsion energy. ENOX gives a one-electron
(orbital) energy representation, thereby enabling to track the potential energy surface with
the ENOX orbital energies alone. The ENOX extracts an orbital view of energy structure from
the highly accurate wavefunctions in ground and excited states, electronic states delocalized
across multiple potential energy surfaces (breaking the Born-Oppenheimer approximation),
time-dependent wavepacket states, and so on. We have applied ENOX to the ground state

homopolar diatomic molecules in the second row (Li2 to F2 to anatomize their chemical bond
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formations and thereby have updated the monumental work of Wahl from the molecular orbital

approximation to the correlated electronic wavefunction realm.

4. A new state of small carbon clusters in excited states

We have reported a new class of electronic excited states in small carbon clusters, which are
found in the manifolds composed of many highly quasi-degenerate electronic excited states. In
those manifolds, virtually any one of highly excited adiabatic states undergo frequent, intense,
and continual multidimensional nonadiabatic transitions from many-states to many-states
simultaneously. Therefore, the notion of single (isolated) adiabatic state and the potential energy
surface associated with it loses its physical sense. Consequently, only dynamical nonadiabatic
electron wavepacket makes sense as a physical substance. We refer to these excited states as
the complex electronic excited states. These states were first found in small boron clusters. The
following peculiar characteristics have been identified:

1) The electron wavepacket propagates in time like a diffusion in the Hilbert space with the
huge state fluctuation.

2) Quantum chaos has been identified in the quantum electron dynamics for the first time.

3) Despite the huge electronic fluctuation, they are supported by rather strong chemical bonds.
4) The excess nuclear kinetic energy is dissipated to the electronic sea towards “equilibration”
due to a “friction” induced by the continual nonadiabatic couplings.

5) Despite the high electronic state energy, the clusters bear long-life times, due to the
phenomena of Intramolecular Electronic-energy Redistribution (INER) [Takatsuka and Arasaki, J.
Chem. Phys., 2023, 159, 074110], and so on.

Here in this work, we have shown that the above characteristics are certainly “generic” as
molecular properties in the excited states of the carbon clusters in depth. In addition to the
previously established analyses, we here perform numerical analyses of the geometrical
decomposition (collective coordinate analysis) of the nonadiabatic interactions [Takatsuka, J.
Chem. Phys., 2024, 160, 044112] to quantify the concept of nonadiabatic burst and identify the
origin of nonadiabatic chaos.

Sonification of the dynamics of the energy natural orbitals (ENO) with respect to the present

carbon cluster has been presented.

5. Original papers

[1] Analysis of quantum mechanics with real-valued Schrodinger equation, single-event
quantum-path dynamics, Maupertuis path in parameter space, and branching paths beyond
semiclassics

Kazuo Takatsuka
arXiv:2501.08606 [quant-ph] https://doi.org/10.48550/arXiv.2501.08606

[2] Orbital perspective of the nature of chemical bonds and potential energy surfaces: 55 years
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after Wahl’s molecular orbital representation of homopolar diatomic molecules
PCCP, accepted for publication
https://doi.org/10.1039/D5CP01870F

[3] Geometrical decomposition of nonadiabatic interactions to collective coordinates in many-
dimensional and many-state mixed fast-slow dynamics
Kazuo Takatsuka
J. Chem. Phys. 160, 044112 (2024) (7 pages)
https://doi.org/10.1063/5.0186816

[4] Sonification of molecular electronic energy density and its dynamics
Yasuki Arasaski and Kazuo Takatsuka
RSC Advances 14, 9099-9109 (open)
DOI: 10.1039/d4ra00999a
(Sound data in https://doi.org/10.1039/d4ra00999a)

[5] Mechanism of quantum chaos in molecular nonadiabatic electron dynamics
Kazuo Takatsuka and Yasuki Arasaki
J. Chem. Phys. 161, 061101 (2024) (6 pages)
(doi: 10.1063/5.0219345)

6. Presentation at academic conferences

(1) B - Bk RS (Kazuo Takatsuka, Yasuki Arasaki)
“BT T2V X —OFEMEGE Z2 DRI
(”Sonification of molecular electronic states and electron dynamics”)
26 L ai S 2024/5/21-23 HPEKY:

(2) EIFAT - P Herst (Kazuo Takatsuka, Yasuki Arasaki)
“%RI0 - IRRERMIFEWT BB L O S M L7y i Nonadiabatic chaos & Nonadiabatic burst”
(“Collective coordinate analysis of nonadiabatic interactions: Applications to Nonadiabatic

chaos and Nonadiabatic burst”)
STRIESRS 2024 £9H18-21, HHIAY:
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Tatsuhisa kato

part-time researcher

1. Summary of the research of the year
An Icosahedral 55-Atom Iron Hydride Cluster Protected by tri-tert-Butylphosphines
Nanoclusters are nanometer-sized molecular compounds characterized by significant metal—
metal bonding and low average oxidation states, and they exhibit unique properties distinct from
those of small metal complexes or nanoparticles. Unlike noble metals stable in metallic forms, the
synthesis of nanometer-sized iron clusters has been precluded
by the relatively weak iron— iron bonds and the high reactivity
of low oxidation state iron, despite the extensive history of
molecular iron compounds. Here, we report the synthesis and
characterization of a cationic 55-atom iron cluster [Feb5] with a
1.2 nm icosahedral core. (Figure 1.) Its 12 vertices are occupied

by tri-tert -butylphosphines, while multiple hydrides cover the

surface. This core can be viewed as a substructure of the face-

Fig. 1. Crystal structure of [Feb55][Fe6]

depicted in a ball-and-stick model.

for the stable bulk phase. This work reveals a stable structure and Hydrogen atoms and the crystal solvent
(toluene) are omitted for clarity. Color

fundamental properties of a nanometer-sized iron cluster, which legend: dark blue, Fe; orange, P; teal,

Si; light blue, N; gray, C.

centered cubic (fcc), in contrast to the bodycentered cubic (bcc)

have remained elusive for decades, and the simple synthetic

protocol provides a route to explore molecular nanochemistry. 60K T=4—>160K
Further analysis was performed using electron spin resonance

(ESR) spectroscopy on [Feb55][Fe6] in toluene at 300 K, revealing

a relatively narrow and sharp line at geff = 2. At 4 K, a sharp S

= 1/2 signal appeared at geff ~ 2.08, which may be assignable | , : —Intolene
0 200 400 BOO 800 1000 1200
Magnetic Field (mT)

to [Fe6] anion. Additionally, a broad spectrum with significantly
increased line width appeared (Figure 2). Upon warming the ;i)gétri'Oyfngstgégﬁﬁzfgxg Ef:mEr:i
frozen solution to 160 K, the intensity of the broad spectrum © 160K

increased, accompanied by a shift in the apparent resonance field and a decrease in line width.
Similar spectra were observed in ESR measurements of powdered samples. These results deviate
from Curie’s law and sharply contrast with conventional paramagnetic Fe complexes, indicating a

property unique to our compound.

2. Original papers
(1) T. Higaki, K. Tanaka, H. Izu, S. Oishi, K. Kawamoto, M. Tada, W. Sameera,
R. Takahata, T. Teranishi, S. Kikkawa, S. Yamazoe, T. Shiga, M. Nihei, T. Kato, R.
Cramer, Z. Zhang, K. Meyer, and Y. Ohki, “An Icosahedral 55-Atom Iron Hydride
Cluster Protected by tri-tert-Butylphosphines”, J. Am. Chem. Soc., 147, pp. 3215-3222
(2025). (doi.org/10.1021/jacs.4c12759).
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Masaki Sasai
FIFC Research Fellow

1. Summary of the research of the year
[1] Thermodynamic mechanism of chromatin domain formation

Chromatin domains, sub-mega base assemblies of chromatin in cells, serve as both structural
and functional units of the genome. A key question is the mechanism of how these domains are
formed within cells. Recent insights from microscopy measurements have shed light on this issue,
showing that the core of these domains consists of condensed clusters of nucleosomes, while the
outer region consists of functionally active open chromatin (Miron et al., Sci Adv 2020; Minami
et al., Sci Adv 2025). Based on this understanding, we developed a thermodynamic theory of
chromatin domain formation that predicts a universal relation between the domain size and the
fraction of open chromatin regions. This relation has been shown to fit the observed domain size
distribution across a variety of organisms, including yeast, Arabidopsis, tomato, fruit fly, mouse,
and humans (Fig. 1). These findings support the loop-capture model (Uhlmann, Mol Cell 2025)
of how cohesin stabilizes domain boundaries, challenging the widely accepted loop-extrusion

hypothesis of domain formation (Mirny et al., Curr Opin Cell Biol 2019).
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Fig. 1: A universal relation explaining the distribution of the size of chromatin domains across various organisms.
The distribution of the domain size L is plotted as a function of the fraction ¢ of open chromatin regions. L. was
detected from the Hi-C data and ¢ was detected from the Chip-seq data of acetylated H4 tails both reported in
databases. The orange line is a universal relation derived from the thermodynamic theory of domain formation. (Left)
The distribution in mouse embryonic stem (ES) cells. (Right) Distributions of various organisms superposed.

[2] Bayesian-based analysis of the unexpected movement of linker histone.

Linker histone HI1 has traditionally been considered a stable molecule that binds to a specific
location on nucleosomes, contributing to the maintenance of a condensed chromatin structure by
restricting its spatial configuration. However, advances in live-cell imaging techniques developed
by Maeshima’s laboratory (National Institute of Genetics, Mishima) have enabled researchers to

trace the dynamic trajectories of individual HI molecules in living cells. These measurements

revealed that H1 exhibits unexpected rapid movements, challenging the conventional
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understanding of its role (Shimazoe et al., bioRxiv 2025). In our study, we analyzed these live-cell
trajectories of H1 using a Bayesian-based method, demonstrating the significant impact of H1’s
rapid motions (Fig. 2). This analysis enhances our understanding of the role of dynamic molecular

movements within cells.
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Fig. 2: The distribution P(M) of mean-square distance M observed during 0.5 sec in the single-molecular trajectories
of HI movement in living human cells. Each panel represents the distribution obtained from each single cell, which
was analyzed with the Bayesian method. Distributions from 10 cells are compared. Arrows indicates the distribution
valleys.
[3] Genome architecture formed through multiple cell cycles
We developed a model of human genome structure through cell cycles by extending the
previously developed whole-genome model (Fujishiro end Sasai, PNAS 2022) to cover the mitotic
phase. With this extension, we focused on the role of memory persisting through cell cycle in
genome organization. The simulation progresses from mitosis to interphase and the subsequent
mitosis, leading to successive cell cycles. During mitosis, our model describes microtubule
dynamics, showing how forces orchestrate the assembly of chromosomes into a rosette ring
structure at metaphase (Fig. 3). The model explains how the positioning of chromosomes
depends on their size in metaphase. The memory of the metaphase configuration persists through
mitosis and into interphase in dimensions perpendicular to the cell division axis, effectively
guiding the distribution of chromosome territories over multiple cell cycles. At the onset of each
G1 phase, phase separation of active and inactive chromatin domains occurs, leading to A/B
compartmentalization. Our cycling simulations show that the compartments are unaffected by

structural memory from previous cycles and are consistently established in each cell cycle.

Fig. 3: Snapshots of the entire cell-cycle simulation
of human genome structure. Through the dynamic
movements of chromosomes in prometaphase (left),
chromosomes assemble to show the rosette-ring
arrangement at metaphase (right).
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[4] Nonequilibrium currents and landscapes of gene network dynamics

In gene regulation, the timescales for changes in chromatin states can differ from those for
changes in the concentration of product protein, raising questions about how to understand their
coupled dynamics. We examined the effects of these different timescales on eukaryotic gene
regulation using a stochastic model that describes the landscapes and probability currents of
nonequilibrium fluctuations. This model shows that slow, nonadiabatic transitions of chromatin
states significantly impact gene-regulation dynamics. The simulated circular flow of the probability
currents indicates a maximum entropy production when the rates of chromatin-state transitions
are low in the intensely nonadiabatic regime. In the mildly nonadiabatic regime, this circular flow
fosters hysteresis, suggesting that changes in chromatin states precede changes in transcription
activity. Furthermore, calculations using a model of a circuit involving three core genes in mouse
embryonic stem (mES) cells illustrate how the timescale difference can tune fluctuations in

individual genes (Fig. 4).
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Fig. 4: The landscape of the circuit of the three core genes, Oct4, Sox2 and Nanog, of mES cells, calculated
with the heterogeneous adiabaticity parameters. (Left) The two-dimensional landscape showing the distribution
of concentrations of Oct4 and Nanog. (Right) The three-dimensional landscape projected on the two-
dimensional plane.
2. Original papers
(1) Shiori Iida, Satoru Ide, Sachiko Tamura, Masaki Sasai, Tomomi Tani, Tatsuhiko Goto, Michael
Shribak, and Kazuhiro Maeshima,
“Orientation-independent-DIC imaging reveals that a transient rise in depletion attraction
contributes to mitotic chromosome condensation.”
Proc. Natl. Acad. Sci. USA. 121, e2403153121 (2024).
(2) Shin Fujishiro and Masaki Sasai, “Three-dimensional memory of nuclear organization through
cell cycles.” J. Chem. Phys. 162, 065103 (2025).
(3) Masa A Shimazoe, Charles Phillips, Jan Huertas, Satoru Ide, Sachiko Tamura, Stephen Farr, SS
Ashwin, Masaki Sasai, Rosana Collepardo-Guevara, and Kazuhiro Maeshima,
“Linker histone H1 functions as a liquid-like glue to organize chromatin in living human cells.”
bioRxiv, https://doi.org/10.1101/2025.03.05.641622 (2025).
(4) Masaki Sasai, Bhaswati Bhattacharyya, Shin Fujishiro, and Yoshiaki Horiike
“Landscapes and nonequilibrium fluctuations of eukaryotic gene regulation.”
arXiv:2502.10067 (2025).
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3. Review papers and books

(I) Shin Fujishiro and Masaki Sasai, “Three-dimensional simulation of whole-genome structuring
through the transition from anaphase to interphase.” Computational Methods for 3D Genome
Analysis (Springer Nature) 293-308 (2024).

(2) Shin Fujishiro, Masaki Sasai, and Kazuhiro Maeshima,
“Chromatin domains in the cell: phase separation and condensation.”

Current Opinion in Structural Biology 91, 103006 (2025).

4. Presentation at academic conferences

(I) Shin Fujishiro and Masaki Sasali,
“Formation of chromatin domains without loop extrusion: the chromatin capture model of
interphase cohesin.”
The 21st Congress of the International Union for Pure and Applied Biophysics (IUPAB), Kyoto,
June 24-28, 2024 (Invited).

(2) Masaki Sasai,
“Non-adiabatic effects of chromatin state transitions on landscape and probability current in
gene switching.”
Joint Annual Meeting of the Korean Society for Mathematical Biology and the Society for
Mathematical Biology 2024, Seoul, June30 — July 5, 2024 (Invited).
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I FTlT, JTLOPCPRENL IS8 b G-/ 5| P 1E
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toluene
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LR RE 0 R B RS 1< B 53 % 381 o [EHP CPC A7 7 2160equv 2880 equiv
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DETHIE & O 3L F — IR D LT, 8 o’ 3 0s O
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F T %)L ¥ —(BDFE) & & OfE &l v & L £ — = JOF“BUZ A
(BDE) % I > T #4ffi L 72 [MoI(NHx)(R-PCP)]® N-H# . rBS; A

1IPNP

BIXNXF LIS 2, GHHA 7Y —= v 7 Off
B Bx A m A2 FFOPCPRUAL - %2 8%E1 9 % Fig. 1. Catalytic ammonia formation in the
72D ORBFHMIE E LT, ANV EUEOEAIZX % presence of 1 as a catalyst. (a) Reported catalytic
PCPHELN. D w A R DIRIR % Fi 72 1THE R L 7z, reaction. (b) Plausible reaction pathway for 1.
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BIXO4,4-07 227220 x% Y (DDM) Thfk L
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R— 2 L 328D L K x o BHERE Y O CFE~ D%
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I¥DGEBA-DDS%r ¥ (CF/DGEBA-DDSHH) THH. b
9 1213DGEBA-DDM%;¥ (CF/DGEBA-DDM#L[H) <TH
%, FEFER, BB 2RSS (Smax) %
RIRT 2 2 LTt L 2z, BEEIGI-Z R D 65, Smax
3 CF/DGEBA-DDS# i TI121160.37 MPa<T® ). CF/
DGEBA-DDMYii 0 1060.48 MPak h v 2 & 2385
DT oo, T RIVX =S RNT TR, WA OBAEIGT)
IR Z2DFTOF G138 L T 7225, CF/DGEBA-DDS
R TROMOFLGBEVEHETH > 7, MifBEN 2

)= —EHAEMBHZIAL HHI LT

(a)

(b)

Fig. 2. (a) Optimized structure of
CF/DGEBA-DDS interface, below its top
view. (b) Optimized structure of
CF/DGEBA-DDM interface, below its

top view.

LEYyRE2L— a3y (COHP) f@Hi<id. DFTOHFLGIZHEMU L Tw2bon, %k 2 WEMHEE
JIBSR Sz, WFHOFREROKER G (HAGG) DEZESH, 28 U BlRo~ v 2L
CF&IAID COOHKE M D 99> OH- m A & #i% S iz, By COHPA 5 FHR S L7 W AL 1E A

L3 ¥—. ¥4 bbIpCOHPIZ. CF/DGEBA-DDSHfilz

2R Z 2 IpCOHPAE (> 1 eV) %

D6 DKEFEGHHAER DS 5 DIk L. CF/DGEBA-DDMALHICIZ525H % Z L #5002 L 7=,
DGEBA-DDM% 10 7 & v 4 & CF#H & DD ANEMIE, TXTOMAEHDHTKRE %RIpCOHP
filizR L7, DDSHTDOHLICH 2 ALk v s Z o wREMHE/EHIC X b, DGEBA-DDS 1-13
DGEBA-DDMZ%y1- & )  CFEIE L 72 © . CF/DGEBA-DDSHLH T D2 8ot B F il & a7,
L7235 T, CFEHEIZBAHE/EM %L <. DGEBA-DDM%r¥- X H $ DGEBA-DDS%r 7% L T

A2 R,
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[ENOXIC & BILZBEADEHIR] MW AESGREFZ AL X - Th, BERFED GO 2L
X — O ER A ICHLE S, ENO TR A+ Th 5, 2 2T, HMEKFED & O 7ENOXT
DAL AR DG MR, g OS2 FIc oW TRE L 72 [4], ZOR%E., #atkiuE - Ik
fl O PEWE - A G TERE & v o 2R, BOXREE Vol O THEREG TR S AR, K

SREHEZ EOEE RS PR T ED X H I T 3 0% 7 (2],

() (T2) (Vo) (Vo) (Vay) Vo) (Vaam) (V)"
I<7g 0.000 0.077 3.925 —2.209 —2.000 —0.208 —0.284 —0.143
loy 0.000 0.030 3.960 —2.215 —2.000 —0.224 —0.254 —0.113
2(7g 0.014 3.083 9.667 2.946 1.973 1.665 4.748 3.108
1 Tuy 0.057 0.664 5.150 2.043 1.945 0.499 1.162 0.725
In'u_,. —0.057 —0.664 5.150 —2.043 —1.945 0).499 1.162 0.725
20y 0.327 0).655 1.139 0.002 1.374 1.856 2511 1.257
30'g —0.236 —0.328 1.791 —0.636 —(.449 0.378 0.706 0.410
litg\ 0.077 0.128  —0.533 0.159 0.042 —0.203 —-0.332 -0.183
1 7gy 0.077 0.128 —0.533 0.159 0.042 —0.203 -0.332 0.183
30y 0.016 0.018 —0.102 0.033 0.012 —0.040 —0.058 —0.030
Total 0.000 —3.445 27.194 -11.749 11.999 0.000 3.445 2.734

M3, C2—HIH T F D TR BB i E AL IE COENOX DM 0 22 M JERE S . ENOX~D i & O | CLE B B S = 7 L ¥ — %
IBEFIELDF L L UTHRATT 2 2L TE 5, M ARENDT 538 FIEH) T 3L ¥ — DM RS 15,

[FEHERBE] DLERTEZ X ) ICIEMBWHAEH OR B4l (geometric decomposition)
WK BENTC, A VFE7 7 AYDOEMEIRED X 9 7%, MOIENEH L ER R OB /12 #Ic A 6 5
W ZRFEIE R R 2 T 2 2 L 23 CE, 2N F TOENOIC X Bl 72 & & G T JEWT 2Vl
HERAZRE N OMBEBEE 572, FAROBERIEZFTIE I FIAZIRo7Z ETIEEL, REZ T A
Zh . MDRICH L TE BEINH B, 7. ENOZHLIE L ZENOXHIKRIC & ) EE R
TOMERE AR EDtdEAR, ZOWADIHFTCE 2L 25 TH B,
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XBRED Ty by BHb70, Jeafko /o — IV ELERRZ 235 2 513 ST ETT 2
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7ANOMLEIE ) (KMF)SEE, (b) RWIREOMAETH DA+ v 7> a v b, ZOIRED S Bl
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N5 &) RO =XITHEPEEFNLDTH S,



NV HgE#E (2024)

[EPRBLENE N X 1 > #HE]
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| | Shin Fujishiro, and Masaki Sasai Threejdlrpen510nal memory of nuclear The Journal of 162(6), 2025
organization through cell cycles Chemical 065103:1-18
Shin Fujishiro, Masaki Sasai, Kazuhito | Chromatin domains in the cell: Ph Current Opinion
) in Fujishiro, Masaki Sasai, Kazuhiro romatin domains in the cell: Phase in Structural 91:103006 2025
Maeshima separation and condensation .
Biology
eH EKR
Applicability of i 1 ion th f
Yuki Seno, Kodai Kanemaru, Shoichi mgll)elccjz; Ey:)i d?::%;i If qsl:;:i(z)r;t cory o
1 | Tanimoto, Tatsuhiko Miyata, Haruyuki q Y Physica A 674(15),130787 | 2025

Nakano, and Norio Yoshida

thermodynamic response to charged
particles




Vv E# (2024)

2. £RMEEZANKR 2024 (55%06) £ /&
ZANHE | HFRE 4 ZANNH Iy Z AU FIE &R - Ik RN
AR FRL 7 BAGE A b i
e fil 2024/1/1-2024/12/31 | (GAP 77> F) | FT7LXS7VARKIE
O I Kk ZE AR D B T
kR Oz W7 v —7 5N
ek W) p g [RESIEREDZER | 2024/4/1-2025/3/31 | HRAZHMOLFEX HLES 2> 7 n—71
B3 2%
3. BHEM—E 2024 (55#06) £ &
W 4 K 4 LI R H # Hi
it i = e oH O 4 2024/6/30 2024/7/6 T
RoE B # | K H 2024/6/17 2024/6/30 A
ot v = B R 2024/9/1 2024/9/5 AV R
Wt 74 = SN S =N 2024/9/9 2024/9/14 54
il 7% = o H B 4 2024/10/7 2024/10/14 =E]EA|
il 7% = & o H K 2024/12/17 2024/12/21 4
4. BFEZA—E 2024 (55%06) &£ /&
ZANNEE 244 Z NI RN
- 4 MI64E4H 1 H~ | organic chemistry, physical chemistry,
etk i LS SH7HE3H31H and quantum chemistry




vV E# (2024)

5. @HH—REMR L 4—2 2 KRPIL RRE—-7AT7 4

FUKUI INSTITUTE FOR
FUNDAMENTAL CHEMISTRY

;?‘ﬂ:—ﬂiﬁnj

Nerlr SHE 81 20100)
FAESE TR SES
EPEM AL D NS INRE R TE 0D FZEH |

e
————— 16:05-17:25 : [ 5

17 35-19:00

a2 808 k)
&1 | HEAZ EAR—EAWEEL S—

T606-8103 T AER X EHRAT34-4
BHALAHAZDEFELTIE, LTOURLZZSHE &Ly (2025418208 %)
BA&+E 5% : XA #ii ~ E-mail: sympo2024@fukui.kyoto-u.ac.jp

EHE  Tel: 075-711-7708 Fax: 075-781-4757

https://www.fukui.kyoto-u.ac.jp/sympo2024




Vv E# (2024)

5520 Ml AR bRl ¥ =V YRV T A

rarv g A

H K 202542 H6H (K) 13:00 - 17:25
% BT RUERRA: iR —ilaiie v ¥ — 3B R&E=E

B&3\ (Opening) :

[ A& DfE ] feif i URARY: WIFEflabtyie v ¥ —R)

13:00 - 13:05

i5i®% (Lecture Session) :
TirE R (R SRRl asie v 8 —)
MM LR O H AR
JER: ¢ M S (AR S S E e e — Ml s A 7 L3R

@ i JUMRFRABE BLA0TFEb)

RO & REHLAARERIC K 2 MM B IR R L o i H |

JER © i i CURARR i — Rl i si e v 9 —)

13:05 - 14:05

14:15 - 15:15

fBHH—RpE T8\ ®E (Award Lecture) :

ZHEAH WK KB GRERER G TAEE R
PR AL R RIE S RS < B BRBHTR A 1% DFERERA T

FKRAa—+tv 3 (Poster Session) : 3 BEXBEE

3B#E (Banquet) : 1 BESHMN—L

15:25 - 15:55

16:05 - 17:25

17:35 - 19:00



vV E# (2024)

RAZ =Y AL (3FERZHEE 16:05 ~ 17:25)

v FESDEED T IFHTE (16:05-16:45) | /-5 0MEED 7131 (16:45-17:25) 12, FAY — R — F i
THETHEITLTUEI Y,
v Authors with odd and even poster numbers should be present at the poster during the first

half (16:05-16:45) and the second half (16:45-17:25) of the session, respectively.

1. CASPT2/PCM &35t H
OPA FEJL (R BER)

2. [Ni(phen)312+DEFIVNIISZT V DRAFKEBRINZANRY MV O R
ORA M E 1N 2] ek 7Z5C1,3] GRORBE L1 Al B RBe R 2] 5ORME 2 (3])

3. Scaled Schrodinger equation-§# & 1125#-SAC-Cl IBGNESIER
Ovpit i (Bt i)

4. /NN ERELRGICH T BJahn-Teller $HER
ORAT EIBE[1,2] B H 1E3%[1,2], 7738 HAI2) )5 SR ER[2], 21 i 1,2] CRoRfEH (1],
WREET[2])

5. BANHAAFRXNEREZAVLERPES T FOREFECHTIERDOMARA
O TRIL,2], i F31L Ao A 2] RURfEH R (1], A RBefE 2], 4K T.(3])

6. 7T FLoNBRUFERTIHIL  OBELEFIKBICHTIEFLEMR
O ZR[1] 5 58 (1,2,3], 1A HLEE4], 5 3,41 B HE ~F(3,4]. %M sEF[1], AL
JHEE(1,2,3,5] (BORBEHERE T[1], BCRQIQBI2], B RICS-OTRII3], BoABE T-[4], e KOTRI-Spin|[5])

7. AR S HFENEOENHEIR ICLIBEEE
Ozl ME— (FERRT)

8. PACx 7/ *1—7 D& - BFIKEICEHTZIERMAE
Ol BRI ZH =21 R 58 1-(1,2,3] A6 BERE(1,2,3,4] (BORBERERE 1], BoRQIQB(2],
B KRICS-OTRI[3]. Bx KXOTRI-Spin[4])
9. REWMEF 7NTyvhH—BAyN)ILM)—740L7=F MEKICRT3IERME

OREH B[ 1], %W s (2] ot 2], AL B (2] (BORFERE T[], BoRBEEERET[2])



Vv E# (2024)

10. FSNUFNA=NETIETLINI A DS E3#EOH_BHEINRY MVICEAT 21E6GHAE
O%EH BU5(1], KH Jes(1]. % H 3¢ 2], B 72 (2,3,4,5], d6nl Hil(2,3,4,5,6] (BRARIERE T
[1]. BERBeIEEET[2]. BRQIQBI3]. BARCSEC[4]. BKICS-OTRI[5], B AOTRI-Spin|[6])

M. ZFOFYRSTANEREFICEE S 2 /1 N#KOBTSEICET 2 BRME
Or #EH1), HF E BRI #5H S50, ZH 21, R 52°4(1,2,3,4], bl Hif(L,2,3,4,5]
(BRBERERET[1]. BOKQIQBI[2], B ARCSEC[3]. B AKICS-OTRI[4]. FiAOTRI-Spin[5])

12. 3F70EVEREROICHE T IR ABRROEMHIBRERMECRIZTREICHT 2ERARK
OJFH FL([1]. ZH 2], 581-(2,3,4,5]. ) FEFE(2,3,4,5,6] (BORERE T 1], BORBEHERE T.
[2]. B R QIQB[3]. B KRCSEC[4]. B KICS-OTRI[5]. Pk KOTRI-Spin([6])

13. Theoretical study on photophysical processes of triphenylamine-benzothiadiazole compounds
(OZhengnan Hu[1,2], Naoki Haruta[1,2], Tohru Sato[1,2] (Grad. Sch. of Eng., Kyoto Univ.[1],
FIFC, Kyoto. Univ.[2])

14 ANTEAOVEBROREBBE—ER-ZEEX v 7TREBBOERNE R
Ot F S HE2], fei % C2,3] ORI OB 21 5K H 2 (3])

15. F—[REDFTHU+V EICEWHMHIEL B/ VI LDBFHE
OAN FALL,2] K il 1,2] Feigg ikl 1,2] CRORFEH 2 [1], 5UREBET(2])

16. SMBRICEIIAEY— RV REOBNZHB/TMIITORREZDEF AN/ —H1IVAD
W
O/ FE, A i CrORE)

17. Diels-Alder RIED XA /7 IANVRISHEICE T 32 RAVH K
OB HER(1,2], 2% vV (3,4 W 1EE(1, 2] ek 1,2 Ny 22V [3] (RURfEH R[] 5URBE
T[2], 7V EE LA IR AAR[B] N — S ALK [4])

18. EANUFPZAL VB EHOBES LVEFRBICHITIERMR
OfRA BERILL B RV 2], 5 58 1412,3,41, 2 H s P12], A HefE(2,3,4,5] (BORHERE T (1],
BROKBEEERE T.[2], PR QIQB(3], B KICS-OTRI[4], Br KOTRI-Spin)[5])

19. BEMRBIEHEEZRT MY TS aAT7HIVINT =V Fo K7 —DIREEE

O#tk RO1,2]0 KH #i[1,3]. %5 J (4] 7V 7L e b 5] e #i(1,3] GORREH(1],
FORL2] 5ORBE T3] JURBERR LT [4], LUK E5])



vV E# (2024)

20. FHEFEAMIR(C & 1T B HERaman MELEEDER(L
OJ\UK $HBE(1,2] KH #il1,3] &M 631,31, ek #1,3] GrORfEH [ 1] 50K T (2] 50REET[3])

21. E—RiB/\ FEtE % A\ /-Li-inserted trioxotriangulene 5@ NI2RME
OAt¥y s8], % H & F[2], B 56 F(2,3,4]. A6 FEFE[2,3,4,5] (ORISR T 1], BoRBEERE 1.(2].
P KQIQB[3]. B KICS-OTRI[4], B AKOTRI-Spin[5])

22. Kekulé BEEZH b LI OSBAEVEREIKEEZRIMFBlatter 7V AN_EFRNERIZR
OffEx 2M(1). i &1, EAK K&, B @R11,2] GURBE (1], sREH£(2])

23.NBO ###fiz A\ lca 7 v RIEINRTF FOAKEREICKT 3HR
OXRETL BRI A2 EEAS3E (2], a3 PR3], 8 A2 [4) BT M ER (5], I PE1-[5], B BE[6].
el 312, 7)) HERI8] ORI BURBE T 2] R 7 R s £ (3], S K Be R (4],
HRBERE T.[5] FRABE6], 5URMEH2 (7], 4 KEBErEH(8])

2. RESFHOLIMH3 BARETNICEIBZL TLY 74y 3477 RAICETEERMA
OFA il 1], M @G, 20 21,210 R 28°1(1,2,3,4] 6w REFEN,2,3,4,5] (BORBEERE T 1],
B ARRCSEC[2]. A QIQB[3]. B KICS-OTRI[4], FioKOTRI-Spin([5])

25. EEn HRIEFSFOBHRIREI ST EHSLIVEEHEBEENIRNX—F+y7H|
O KA1, = ARV #H(2] B #%(2]. Kdb &4:(1]([1] Grad. Sch. of Eng., Kyoto Univ.,[2]
Grad. Sch. of Adv. Sci. and Eng., Hiroshima Univ.)

26. WMRABE-BEMEER%ZZEL/-Passerini RIGHRDKDIERE BRI REDEREA
QW7 REA][1], T BHER[2]. 85K S5[2] 210 FEARSE[2] ik K C(2,3] GUR L[] 5ERBET[2].
A (3])

27. REBEESFOn ERRDBELEFIREBICATIFEIXBEKFEICOVWTOEGMA
OGSy FEA[1], 5 58F[2,3,4] 248% 78 K[2]) )11 E B[] 2 H 52 12], e EFE(2,3,4,5] (BoR S
BE[1], BB BLRE (2], BRRQIQB[3]. B KICS-OTRI[4], Bl KOTRI-Spin([5])

28. Rikn HESFOREFEREMEBMRERER O E LB
ONLE APELL R 582,341 1248 seK(2]. % H 2 12], il Héke(2,3,4,5] (BRORERE 1], oK bt
FLRE T (2], BORQIQB(3]. B RICS-OTRI4], B A OTRI-Spin[5])
29. AFIR ;&%\ /=GaN(0001) @ L ONH: 5 2B 18 ) 32 Sh AR 4R

OfH MBI 210 S E12] e B%o2,3] ORI 5URBE L [2]. Rt FH+[3])



Vv E# (2024)

30. ERGEHANETRTREI FIRAZ—E1F L CO-ODHBPNANRT MVICH T BIREBENDHRE
Omif #EL1,2], FH ER(L,2], Mg LA fe 1,2] RORtEH R (1], mUREBEL(2])

3. HKEHZX D 7 PRIGISEEZ R T SITi1-xMnx03 ADPd & &R MEHE
ORI /MK Ao D[] 8L #F (1L HFH Az 1L SR BIORER [1,2] (ROREE T[],
HARMEHx(2])

32. Study of configuration space of water coordination structure using generalized-RMSD
Ol w4 GURBEHE)

38. KRIKDFEEIT B3 H—FKF/F1—TEBRRIEGDIER B
OKH FE[], EE —E[1] &R M) Gk BET35(1])

34. BRBEEETIMER HESFROITTIEREAZHEORBERKFECET 2EAMRE
OJSH AR, 7 5874 (1,2,31 4248 a1, 2 2 (1], dn] BEfE(1,2,3,4] (BORBesERE 111,
B QIQBI2]. B RICS-OTRI[3]. B AOTRI-Spin[4])
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6. EIF—

Seminar

(Dept. of Chemistry, BITS-PILANI, Pilani; India)

Title: Correlating Density Functional Reactivity Theory (DFRT)
Based Stabilization Energy with Equilibrium Constant and
Charge Transfer Limit of a Chemical Adduct

Date and Time: May 24 (Friday), 2024; PM 3:00 to 4:30

Place: The 1’st floor Room 106
Fukui Institute for Fundamental Chemistry, Kyoto University,
Nishi-biraki-cho 34-4, Takano, Sakyo-ku, 606-8103 Kyoto

Abstraet: Some formal developments as well as applications of DFRT based
CDASE (Comprehensive Decomposition Analysis|of Stabilization Energy)
scheme will be discussed. Topics which will be covered includes (1) Full
profiles of the kinetic and thermodynamic energy components of the DFRT
based stabilization energy while exploring the role of external potential in
clucidating the charge-transfer limit in a chemical adduct (11) Establishing the
correlation of equilibrium constant with DFRT based stabilization energy
through a combined approach based on chemical thermodynamics, statistical
thermodynamics and density functional reactivity theory, and (i11) Validation of
Hammett’s Linear Free Energy Relationship (LFER) through DFRT.

+ B—-AB

Electron Electron Adduct
acceptor donor

Equilibrium constant, K

Stabilization energy, |AEsgcam|

Global electrophilicity (w) of A

Contact: Kimihiko Hirao
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